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SUMMARY

Recent years have seen a steady increase of computer systems based
on distributed hardware. This is made possible by the reduction of
hardware costs and increases in the power of hardware components.
More sophisticated software systems are the result. To reduce the .
costs for software development it would be advantageous to reuse
software systems in different target environments. In the case of
distributed systems this means that software may be distributed
differently in different environments. It would simplify matters
if the software could be distributed automatically. In this paper
the feasibility of automatic distribution of Ada programs and .

MASCOT-like programs is investigated. The impacts of the distribution
on the runtime environment and communication system are outlined..,.
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1. Introduction

Recent years have seen a steady increase of computer systems based on

distributed hardware. Such systems offer greater availability and greater
reliability because of built-in hardware and possibly software redundancies.

The software involved is mainly tailored to the particular system. Therefore

hardware changes normally imply major changes, eventually even redesigns of

software components, or, even worse, a new development of the whole software.
Nowadays, it is acknowledged by most people in the computer business, that the
software system is the more expensive part of a computer system. The

application system should be as hardware independent as possible and its design

should not be constrained by target hardware but should only be based on

software criteria. The final distribution of the application system onto the

various hardware components should more or less be performed automatically.

Such an approach would allow hardware changes leaving the software system almost

unaffected. Ideally, the application system should not have any knowledge of
the hardware it is running on.

If design and implementation of software are to be made independent of the

target hardware, some questions need to be resolved leading to an automatic

distribution process:

- In what way is a distributed target environment to be described?

- In what way can an application system be partitioned and how can the

resulting parts be distributed?

- How is an efficient means of communication achieved between the

distributed parts?

- To what extent are compilers, linkage editors, and loaders affected?

- What are the requirements for an underlying runtime system? .

Ideally these questions should be solved independently of particular design

methodologies and implementation languages, because they are of general
interest. However, this paper restricts itself to MASCOT [ 2 ] and Ada [ 1 ]. 1
The clear design guidelines of MASCOT ease the distribution process. Ada, on
the other hand, seems to complicate the problem with its special tasking and
package concepts and its visibility rules.

This paper contains a description of the problems involved in mapping concurrent

software onto distributed hardware environments excluding the trivial
possibility of purely manual distribution. The feasibility of several

alternatives is examined. Solutions to the problems (in particular, a
description of possible implementations) is beyond the scope of this paper.

• S ., .
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2. The Hardware Environment

The main goals, which are to be achieved with distributed systems, are increases
of reliability, modularity, expandability, and adaptability of computer systems.
A secondary goal, which seems to be obvious, is an increase of computing power
and speed. However, the necessary communication between various parts of the
system also increases and tends to degrade the performance of the system.
Therefore the goals can only be achieved by

an efficient distribution of the hardware components with respect to the -
requirements for reliability, modularity, and expandability

and by

an efficient distribution of the software components with respect to a
minimization of the necessary communication.

The distribution of hardware components may impose restrictions on the
distribution of software components and vice versa.

The distribution of hardware is well understood, but there is little
understanding of efficient software distribution and no sound theory exists.
Software systems are normally tailored to specific hardware structures. This
approach neglects the fact that changes of hardware components happen quite
often, which then result in software changes or even partial redesign of the
software system. It is now commonly recognised that software components are the
more expensive parts in computer systems. Software changes should therefore be
kept to a minimum. A system which distributes a hardware independent
application program onto a formally described distributed environment would be
the best solution. To achieve this goal, it must be clear:

what range of target environments is relevant (i.e. the term "distributed

system" must be defined),

what the essential elements of distributed systems are (with respect to the
problem of distributing a software system), and

how such a distributed hardware system can be described formally.

This paper is primarily concerned with distributed systems in real-time
environments. Such systems should be able to react to external events rather
quickly. Therefore the work load should be equally distributed over the whole
system.

2.1 Range of Distributed Systems

A distributed system can roughly be described as a network whose nodes are

processing units, memory units, peripheral units, etc., and whose edges are the
necessary communication links between the various nodes. Not every node has to
be linked to every other node in the network. However, computers, which are not
classed as distributed systems, are composed from peripherals, i/o processors,
memory units, etc. Such a definition is therefore not precise enough. ..

To distinguish distributed systems from other systems, the terms "multi-computer •
system" and "multi-processor system" used to be widely used to describe the
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architecture of distributed environments. They are, however, not of any help,
because distributed systems incorporate both kinds of architecture, and because
even "normal" computer systems consist of more than one processor (or even
computer) nowadays.

A better definition of the term "distributed system" is given in [ 6 ]:

A distributed system consists of a collection of highly autonomous nodes,
with each node containing a processor (perhaps processors), primary
storage, (perhaps) secondary storage, and a means whereby a node may
communicate with its environment (e.g. terminals). 0

Nodes are connected together and communicate via a communication network
which exhibits variable (and perhaps unreliable) delays in the transfer of
information from node to node.

This definition is sufficiently general to include both, distributed systems
which consist of an homogeneous collection of processor nodes, each operating
under control of a replicated but common operating system, and a variety of
networks which may contain passive nodes as well as active nodes.

Note that the definition

(a) does not allow the inclusion of common memories (accessible at
instruction level by several node processors), and

(b) implies the use (as the various nodes are highly autonomous) of
distributed (rather than centralized) mechanisms for synchronization
and co-operation.

The latter two features distinguish a distributed system from the more classic
multi-processor system. The term "multi-computer system" is also excluded,
because it implies the possibility of "master computers" controlling "slave
computers" and therefore parts of the system or even the whole system.

Additionally the definition does not characterize (and hence not restrict) the
class of applications for which a distributed system might be employed.

In summary, viewing distributed systems as collections of nearly autonomous
nodes generally implies that one node may request service or information from
another node, but that no node may completely explicitly control the behaviour
of another. This further implies that a node cannot (in normal conditions) work
stand-alone, because it needs information from other nodes in the system to
fulfill its tasks. A distributed system (seen as a "black box") behaves to its
environment like a "normal" computer system.

2.2 Essential Hardware Elements

Whether a hardware element of a distributed system is essential or not, depends

on the purpose of the distributed system and on the person who at the moment S

deals with the system. This paper is only concerned with the task of
distributing a given software system onto a given distributed hardware system.
The distribution which will minimize the load on the necessary communication
links between distributed hardware components and will maximize the parallelism -" ""
of processes (Activities in MASCOT; tasks in Ada) hosted by the nodes is to be
done automatically. Restrictions might be imposed by peripherals which are
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connected to particular (processing) units (nodes of the network) only.
Therefore only those hardware elements of a system are essential, which affect
the distribution process. Further restrictions might be imposed by the
characteristics of underlying runtime environments and the implementation
language (i.e. the use of global objects in an Ada program). Restrictions S
caused by software are dealt with in the remainder of this paper.

The definitions given in subchapter 2.1 mention two major components of
distributed systems: nodes, which host the computing power of the system, and
links between the nodes, which establish a communication network within the -"-

system. It must therefore be assumed that these elements are essential. They 0
would be sufficient for a distribution process, if every node had an unlimited
size of main memory to store the programs running on it, had unrestricted access
to all devices which are used to communicate with the system's environment, and
were fast enough to process its data in realtime. In practice, nodes will have
a limited computing speed, a limited size of main memory and will only have
unrestricted access to those devices directly attached to them. Nevertheless, 0
the distribution process is mainly guided by the number of nodes and of
communication links. Decisions must take account of various restrictions.
Restrictions therefore are attributes of nodes and communication links. An
implementation of the distribution process may define any number of attributes
with respect to special requirements.

In the remainder of this paper it is assumed that nodes consist of one processor
only. The assumption is valid, because this paper only tries to solve the
problems which result from synchronization of different nodes. The
synchronization problems within a particular node must be resolved by the
respective operating system. Routines of this operating system which handle the
communication between nodes are common to all processors in the node. It is
also assumed that all communication links between nodes work bidirectional.

As far as the problem of distributing a given software system onto a formally
described distributed hardware environment is concerned there are two essential
components of the hardware system: nodes and communication links between nodes.
Both components have attributes which describe the limited nature of the nodes -.-

and the communication links. The use made of the information depends on the
implementation of the distribution process.

2.3 Description Method

To be able to distribute a given software system onto a particular hardware
system automatically, the hardware system should be described formally. The
description is one input to the distribution process.

Every essential hardware element of the distributed system is identified by its
type. The distributed system is represented by a graph. The nodes of the graph
are the nodes of the distributed system. The edges of the graph are the
bidirectional communication links. Nodes and edges have attributes which carry
further information.

Possible node attributes are:

- number and type of processors

- size of main memory

4-



- performance (i.e. processing speed)

- special memory locations (interrupt addresses, etc.)

- attached devices S

Possible attributes of the communication links are:

- transfer rate

- type of link (serial, parallel) 0

The various attributes subdivide into mandatory and optional attributes. An
implementation will define the appropriate attributes in both lists. The number
and type of devices attached to a particular node seem to be mandatory
attributes. However, a particular system may allow every node to have access to

every device of the system by using a special communication network.

The following data types can be used to describe the various hardware components
of the distributed system. The number, type, and value of attributes are
implementation dependent. The type and value of "node.identification" and
"interconnection.identification" also are implementation dependent and should
state the unique system name of the particular node or of the particular
communication link respectively.

TYPE attribute IS -- implementation-defined;
TYPE attributelistitem;
TYPE access attribute list IS ACCESS attribute list item;
TYPE attribute list item IS

RECORD
item : attribute;
next : access attribute list;

END RECORD; .

TYPE node;
TYPE accessnode IS ACCESS node;

TYPE interconnection;
TYPE accessinterconnection IS ACCESS interconnection;

TYPE interconnection list-item;
TYPE accessinterconnection-list IS ACCESS interconnection list item;
TYPE interconnectionlistitem IS

RECORD
item : accessinterconnection;
next : access-interconnection list;

END RECORD;
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TYPE node IS
RECORD

identification -- implementationdefined;
list of attributes : accessattributelist;
list of interconnections : access interconnection list;

END RECORD;

TYPE interconnection IS
RECORD

identification -- implementationdefined;

list of attributes : accessattributelist;
node I : access node;
node_2 : access-node;

END RECORD;

The hardware of a particular distributed system is represented by a list of

nodes and a list of edges ("interconnections"). The actual structure of the
lists is left to the particular implementation.

S .

S -
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3. The Distribution of Application Programs

It is obvious that a distribution process needs a proper representation of the
software to be distributed as well as the formal description of the hardware S

environment. The distribution process decides on the basis of both inputs how
to split the application program into proper parts. However, before the

distribution process itself can be defined, the distributable parts of an
application program must be determined. Application programs developed
according to MASCOT are discussed first. The problems involved in splitting an
Ada program are dealt with afterwards.

3.1 Distributable Parts of MASCOT-like rrograms

The MASCOT philosophy clearly defines the parts that an application program is

built from: Activities and Inter-Communication Data Areas (IDAs) . In theory
Activities and IDAs are totally independent from other Activities and IDAs. The
implementation of Activities or IDAs can be replaced by another implementation
without affecLing the construction of the application program, as long as the
respective interfaces are left unchanged. To ease the design of larger 0
application systems, logically closely related Activities and IDAs can be
conceptually grouped together to form Subsystems. Therefore Subsystems too are
to be considered as distributable parts. Moreover, in contrast to Activities,
which are the subjects being scheduled by the runtime executive of a MASCOT
Machine, Subsystems can be started, halted, resumed, and terminated by
respective user actions during runtime (refer [ 2 3). S

Before concluding, how the parts of MASCOT-like application systems should be

distributed, the characteristics of MASCOT units are discussed and their impacts
on the distribution process outlined. Advantages and disadvantages are stated.
Additionally, the impact of library units (i.e. pieces of software which are
used by more than one Activity, etc.) is investigated. .0

MASCOT Device Handlers are not considered to be distributable parts, because
they are closely interrelated with specific peripheral devices attached to
particular nodes. They must therefore be loaded into the respective nodes, and
that may constrain the distribution of other parts.

3.1.1 Inter-Communication Data Areas

Inter-Communication Data Areas serve as communication interfaces between -

Activities. Because Activities execute in parallel, their access to IDAs must
be synchronized to ensure the integrity and consistency of the application
system. MASCOT defines the synchronization mechanisms as part of the IDAs. The
mechanisms are based on an asynchronous model, which is very helpful as far as
distributed systems are concerned. IDAs are passive elements. Their execution
is only triggered by Activities which want to use them. IDAs consist of a data -
area and access procedures to this data area. The access procedures implement
mutual exclusion of those Activities which compete for access to the data area.
The IDAs must be treated very carefully, because they influence the distributed
synchronization mechanisms. Their location in the network must be chosen to
keep the network-wide needs for synchronization to an absolute minimum.

0
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ecause IDAs are the passive elements, their distribution should be considered
fter the distribution of the active elements. Their location in the
nvironment should be determined with respect to efficiency. Before the final
ocation of an IDA is determined, the following options should be resolved: 0

the IDA can be loaded in the same node as the Activity which calls the IDA
most often;

the IDA can be loaded in the same node as the Activity which is the
consumer (or producer) of messages sent through it;

the IDA can be loaded in the same node as the Activity which must be served
without any delay if it accesses the IDA;

the IDA can be loaded in the same node as the majority of those Activities
using it; 0

the IDA can be loaded in such a way that the overall response time in
accessing it is minimized throughout the network.

't may be necessary that IDAs must be redistributed following results of initial
.est runs, because the system has performed badly. This is possible, because 0

listribution process makes its decisions on static assumptions. Dynamic
derations can be achieved by simulating the behaviour of the application

ystem with respect to the workload of the IDAs, taking the result of the
listribution process as a first input. An investigation, to decide whether
simulation or test runs with the newly built system is the better approach, is
)eyond the scope of this paper, because both a working distribution system and a .
)roper simulation system are needed to provide necessary data on which to base a
,onclusion.

3.1.2 Activities 0

kctivities are the active elements in MASCOT-like application systems. An aim
)f a distribution process should therefore be to maximize parallelism in the
;xecution of the Activities. That means that every node of the distributed
environment should always have an Activity in the running state. Ideally the 0
iumber of idle nodes should be zero.

distributed system is represented by a graph (refer 2.). Its active elements

:e.g. processors) are the nodes of the graph, its passive elements (e.g. links
)etween processors) the edges. A MASCOT-like application system is described by
in ACP Diagram which is a graph with Activities and IDAs as nodes and links
)etween Activities and IDAs as its edges. It is possible to transform an ACP
)iagram into another graph showing Activities as its nodes and the connections
)etween Activities via IDAs as its edges. IDAs themselves do not appear in this
Iraph. The task of the distribution process is to reduce this graph to a graph
ihich is equivalent to the graph representing the distributed system. The
•eduction, however, must maintain a maximum of parallelism between Activities _
ind must ensure a minimum of communication between the nodes of the distributed
system. Therefore it must be aware of the IDAs through which the various
kctivities communicate and it must distribute the IDAs accordingly.

kn Activity is implemented by a reasonably small piece of code. The resulting
:ode quantity can therefore be distributed in such a manner, that the amount of 0
inused space of the main memories of the various nodes is minimized.

IIi I iI IIIn~ i i~I ~ I -8-'"



lication program is distributed in such a way that only one process of a node
municates with only one process of another node. This approach, however, may
n that highly competitive processes reside in the same node.

ther approach is feasible. Moreover, the locations of processes may be fixed
their needs to communicate with the system's environment through devices
ached to particular nodes. Therefore the following strategy is recommended.

(1) Recognise the processes whose locations are fixed by their needs to
communicate with devices attached to particular nodes and distribute
them accordingly.

(2) Determine the communication requirements of these processes with other
processes and distribute the latter to achieve a minimum of load of the
communication network. The distribution may be constrained by the use
of global data, subprograms, etc. 0

result of the distribution process should be treated as a recommendation
ch must be approved by the development engineer. The final distribution
,uld be made according to results of test runs, because inefficiencies caused
the communication requirements cannot be found statically.

.2 MASCOT-like Programs

;raph-like representation of MASCOT-like programs is maintained by the MASCOT
istruction Data Base. The representation is equivalent to the ACP Diagram of
program on the uppermost level. Additionally, it shows from what templates

.ivities and IDAs are derived.

is recommended to take Activities as the basis for the distribution of
COT-like application programs. The disadvantage which occurs in addressing
)systems is minor, because the distribution process will put closely related
.ivities (normally those of a Subsystem) together in the same node. The
vantage gained is a better and more suitable distribution of the whole
)gram.

ks should be loaded in the same node as those Activities which access them 0
;t to minimize the load of the communication network. However, a particular
)lementation may choose another approach or leave it flexible so that the
,tem's constructor can choose the strategy interactively.

distribution process should be supplied manually (probably interactively
;er it has made initial decisions) with some guidelines for the distribution

special objects.

the MASCOT Machine an application program runs on is an Evolutionary Machine,
.omatic distribution of the application program is not feasible, since the
>gram may change online. The location of the various program parts must
!refore be specified by the system's constructor. S

22
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3.2.5 Input-Output

To allow a program to communicate with its environment, Ada provides a set of
input/output packages (refer [ 1 ]). These packages must be loaded in those 0

nodes, to which the particular external devices are connected. The code of the
input/output packages can be duplicated as often as there are different devices
attached to the system. The distribution of the program units referring to
particular input/output packages is constrained by the location of the packages.

If special input/output routines are used in an application system, these •
routines should be embedded in special packages for each device. Such an

approach eases the distribution.

3.3 The Distribution Process •

Basically the task of the distribution process is to reduce a proper graph
representation of an application program (the ACP Diagram in the case of a

MASCOT-like program; the scope tree with its use and call relationships in the
case of an Ada program) to the graph representation of the distributed hardware .
environment. The methods of graph reductions are many and are not presented in
this paper.

An actual implementation of the distribution process must be based on adjustable
distribution requirements and strategies. The distribution of an application
program is further constrained by its input/output needs. •

The results of the distribution process are inputs for the code generation phase
of compilers, for linkage editors, and perhaps for loaders of the distributed
environment.

3.3.1 Requirements and Strategies

The distribution process is mainly confronted with two conflicting requirements:

(1) minimization of the load of the communication network, and

(2) maximization of the parallelism of processes (Activities in MASCOT;
tasks in Ada).

Both requirements are essentially to achieve a behaviour of the distributed
system which suits a realtime environment where a low response time to external
(and also internal) events is disastrous. Decreasing the load on the

communication network and increasing on parallelism of processes improves
response time.

A maximum of parallelism can be achieved by allocating each process to a node of

the distributed environment. This is, however, impossible, especially if an Ada

program is considered where the number of actually created tasks cannot be

determined statically. Additionally, a huge number of nodes would be required,
of which at a given time most would be idle.

A minimum of load of the communication network can be achieved, if the
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.2.4 Dynamic Creation of Task Objects

ask objects are special objects in Ada: a fact which complicates the.S
istribution process. Tasks are not the units of which an Ada program is
:onstructed. The structural components of an Ada program are subprograms and
)ackages (library units in a more common sense). Tasks are declarative items
ithin library units. They can be declared wherever a declarative part is
illowed. Nevertheless they are program units and define a sequence of actions.
'ask objects come into existence when the respective program unit or block S
tatement starts to execute its sequence of statements. A task object ceases to
xist before the respective program unit or block statement, in which the type
)f the task object is declared, terminates the execution of its sequence of
;tatements. Task objects can even be created dynamically by the elaboration of
illocators, if they are derived from task access types. Ada does not restrict
;he creation of task objects in any way. Therefore it is not predictable from a •
;tatic point of view, how many task objects will exist during the runtime of an
kda program. This kind of flexibility is not helpful to the distribution of Ada
)rograms. However, to allow for the full power of the Ada language,
•estrictions should not be put on programmers by a distribution process.

[he declaration of a task type consists of two parts: the declaration of its 0
Lnterfaces (entries), which define means by which a derived task object can
,ommunicate with other task objects in a controlled manner, and the declaration
)f its body, which defines the sequence of actions (code) a derived task object
iill perform. The body of a task type is reentrant, a fact that can be utilized
)y a distribution process. It allows that the code of a task type can be
iuplicated within the distributed environment. Problems arise, if the task body . S
ises global objects. The use of global subprograms is not critical. These
subprograms are unable to use objects of the task body. Therefore control can
)e transferred to them, even if they are located in another node of the
?nvironment. On the other hand, if a referenced subprogram only uses local
ieclarative items, its code can be duplicated and loaded in the node the task
)bject runs on.

task objects can be declared within a task body. A distribution process should
'reat them as being declared on the same level as the parent task. Only their
Life time is constrained by the parent task.

If tasks are components of record objects or array objects, they start to live S
Lmmediately after the elaboration of the respective record object or array
)bject.

k distribution process can only work on static terms despite the fact, that the
Lives of Ada tasks rely on dynamic terms. Therefore it can only take the number
)f task types, the number of task objects of anonymous task types, and the S
lumber and occurrences of task object declarations and of allocators as base for
i distribution. If several tasks are created consecutively by the same " .
leclaration or allocator due to runtime behaviour, the resulting task objects
should be located in the same node of the distributed environment. In the case
)f task access types, the task objects must be located in the node in which the
)rogram unit resides in which the respective type has been declared.

Ihe distribution of a task is restricted, if one of its entries is connected to
a hardware interrupt.
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either transfers control to a subprogram by issuing an appropriate

subprogram call or wants to rendezvous with a task object by issuing an
appropriate entry call. In either case a program unit only uses an
interface of another unit. Call relationships therefore denote direct

communication paths between different parts of application programs. S

If the called program unit is declared within a package declaration, a
use relationship is automatically established between the calling unit
and the respective package declaration.

The various use relationships form a dependency graph of an application system.
It is obvious that the graph consists of several unconnected subgraphs, called 0

relationship graphs. These relationship graphs denote disjoint scope areas of
the application program, i.e. parts of the Ada program which are totally
independent from each other, apart from call relationships or from the
initiation of task objects which actually establish these scope areas.

The disjoint relationship graphs determine the distributable parts of an S

application program. The distribution may only be constrained by call
relationships which represent subprogram calls, if the addressed subprograms use
global items (refer 3.2.1.4).

0

3.2.2 Subunits

The declaration of subprograms, packages, and tasks can specify that the
associated bodies are to be compiled separatly. The program units are then
called subunits. The program units containing the declarations are called -0
parent units. A subunit is effectively part of its parent unit and must mention
its parent unit. The language facility only eases compilation. The
distribution process must consider a parent unit together with its subunits.

Subunits, however, may import library units in a context clause. These library

units have to be considered additionally. .0

3.2.3 Library Units

Subprograms, packages, and generic declarations and their bodies as well as
generic instantiations can be compiled on their own. These units (except their
bodies) are called library units in Ada. Bodies can only be compiled after
successfull compilation of the respective subprogram specification, generic
declaration or package declaration.

Library units can import other library units (i.e. make the respective interface
visible). In this case library units depend on other library units. Because of
recompilation restrictions (refer [ 1 )) an Ada compiler builds a dependency
graph which represents the visibility connections between library units.

The distribution process builds a scope tree for every library unit. The
dependency graph of the library units is used to connect the various scope trees
and to form the relationships between the various nodes of the scope tree.

The resulting disjoint relationship graphs determine the distributable parts of
the overall program.
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Figure 3.2-6 :Scope Tree and Relationship Graphs

Nodes of the scope tree may contain two types of relationships to other nodes:

(1) use relationship ....

A use relationship is established between two program units, if one of •...
the units uses objects or types declared in the other unit. Use

relationships constrain the distributability of application programs.
They also denote possible indirect communication paths between parts of
application programs.

(2) call relationship

A call relationship denotes, whether a program unit or block statement
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declared in its enclosing scope. If it does so, these objects may be shared by
several tasks and are not protected from competing accesses, unless the access
to them is put in critical regions.

A task starts its execution at the point where its immediately enclosing program

unit commences to execute its sequence of statements or, in the case of a task
access object, after evaluation of the respective allocator. A task object will

end its execution and will be destroyed afterwards when the scope of the program
unit is left in which its type is declared. However, the enclosing program unit
must wait until the task has finished to execute its sequence of statements.

0

Task objects form the basis for the distribution process, because they are the
only active elements in an Ada program. If an Ada program does not contain

tasks, it is not distributable. The procedure which denotes the main program is
treated like a task object. Because the existence of tasks depends on the
execution of the particular Ada program, the distribution process has to
evaluate the whole program to determine the number of task type and task object
declarations. After this computation the splitting of the Ada program is done
according to its scope hierarchy.

enclosing unit - ------------

1 enclosing unit
---------------- -------------------- I
I task declaration

=> t l task declaration
------------ --------------------- I

Itask body dlao.

S ------------ ----------

t b task body b

Figure 3.2-5 : Transformation Rule for Tasks b-- ------- - - - - - - - - - - - -- - - - - - - - - - - - -

3.2.1.9 Scope Hierarchy and Relations between Scopes

An Ada program establishes a hierarchy of scopes, which can be represented by a
tree structure (scope tree). Every node of the tree represents either the

interface (VOID in case of a block statement) or the scope of a subprogram, _
package, task, or block statement (refer to the transformation rules shown by
Figures 3.2-1 to 3.2-5). An example of a scope tree is shown by Figure 3.2-5.
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and because a package is only elaborated once in an application program due to
language rules, the code of a package body can only exist once in a distributed
environment.

0
The transformation rule is shown by Figure 3.2-4. All possible transformations
are demonstrated.

3.2.1.6 Generic Declarations

A generic aeclaration effectively specifies a template either for a set of
subprograms or for a set of packages.

A generic unit is written as a subprogram or package but with the specification
prefixed by a generic formal part which may declare generic formal parameters.
A generic formal parameter is either a type, a subprogram, or an object.

Generic units are not considered by the distribution process.

3.2.1.7 Generic Instantiations

A subprogram or package created using a template is called an instance of the
generic unit. A generic instantiation is the kind of declaration that creates
an instance.

Instances of generic units are treated as packages or subprograms respectively
by the distribution process.

3.2.1.8 Tasks

A task operates in parallel with other parts of the program. It is written as a

task specification (specifying the name of the task and the names and formal @
parameters of its entries) and a task body which defines its execution.

A task type is a type that permits the subsequent declaration of any number of
similar tasks of the type. A value of a task type (task object) is said to
designate a task. A task object which is not derived from a task type is said
to be of an anonymous type specified at the point of the task declaration.
Access types of task types are also possible. Tasks can be part of compound
objects (record objects, array objects).

Task entries define the interfaces which allow the passing of messages between
tasks. They are points of synchronization of task objects. The message
handling is based on a synchronous model. The interested reader is referred to _

1 1 J for more information.

A task body may contain a declarative part. All items declared therein are
hidden from outside the task body. Therefore the declarative part establishes a
new level in the scope hierarchy of an Ada program. This scope is a leaf of the
node representing the scope of the declarative part where the respoctive task
type is declared in (refer Figure 3.2-5). A task body may refer to items ..- >:
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altered by using the facilities provided by the package. A package body
therefore establishes a new level in the scope hierarchy. The level is a leaf
of the node representing the enclosing scope. Because of the memory facility
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and the overall subprogram is still independent of its environment. Otherwise,
copying the body is not possible, and that leads to problems for the
distribution process.

The transformation rule for subprograms is shown by Figure 3.2-3. 0

S---- -------

enclosing unit -
enclosing unit i -

--- ------------ --------------------

1 subprogram declaration
(optional)

I I I . . .
I I--------------------------I

-=> subprogram declaration 1
- - - - - - -- - - - - -- - - - - - - -

------- - - - - - - - - - - - - - - - -I I

I I subprogram body

I I
I I I --------- ------------ -

- - -- - - - - - - - - - - - - - -

- ---- .............--------

Figure 3.2-3 Transformation Rule for a Subprogram

3.2.1.5 Packages 0

A package specifies a group of logically related items, such as types, objects
of those types, and subprograms with parameters of those types. It may also
specify tasks and other packages. It is written as a package declaration and a
package body. The package declaration has a visible part, containing the --

declarations of all items that can be explicitly used outside the package. It
may also have a private part containing structural details that complete the
specification of visible items, but which are irrelevant to the user of the
package. The package body contains implementations of the subprograms, tasks,
and other packages that have been specified in the package declaration. The
package body may declare items additionally to those specified in the package -
declaration.

For the purpose of this paper a difference between visible and private part of a
package declaration is not necessary. The package declaration is elaborated
once. After the occurrance of the package declaration all items declared in it
can be used within the scope of the declarative part that the package
declaration appears in. A package declaration therefore does not introduce a
new level in the scope hierarchy. It may, however, introduce global items. If
a package declaration contains global items, it restricts the distributability
of other program units which depend on the packege declaration (i.e. which use
items declared in the package declaration). If the package declaration only
contains type declarations (however, not access or task type declarations) , the
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-- - - - - - - - - - --- - - - - - - - - - - - - - - -

------------- enclosing unit 0
enclosing unit -----------

I --------------- ------

Il block statment =>1VOID I.

---------------- - -lc ttmn

1Figure 3.2-2 :Transformation of a Block Statement

Block statements themselves are not considered to be distributable parts of Ada 0
programs. Problems, however, arise for the distribution process, if the
declarative part of a block statement contains the declaration of task objects.

3.2-1.4~ Subprograms

In Ada, a subprogram is written as a subprogram declaration (specifying its
name, formal parameters, and, in the case of a function, the type of the
returned value) and a subprogram body (specifying the sequence of actions). The
subprogram declaration is optional.

*The subprogram body may contain a declarative part. Items declared in this
declarative part are not visible outside the subprogram. On the other hand,
items, declared prior to the subprogram body in the same declarative part or in
enclosing scopes, are visible inside the subprogram. The declaration of a
subprogram body therefore introduces a new level in the scope hierarchy of an -

Ada program. If two subprograms are specified in the same declarative part, the
scopes introduced by them are disjoint. If the scope hierarchy is represented
by a tree-like structure, the scopes of the two subprograms are leaves of the
node built by the declarative part the two subprograms are specified in .

In Ada, subprograms are reentrant. This can be achieved because the declarative
part of a subprogram is elaborated at the point of its call. Therefore the
scope of a subprogram is not effective until the subprogram is called. If a
subprogram uses only items local to it, its execution is totally independent of
its environment apart from actual subprogram parameters. Therefore the
existence of several instances of such a subprogram in different nodes of a
distributed system would not change the behaviour of an application system.

* This fact can be utilized by the distribution process.

However, if a subprogram refers to global items, it may not be independent of
its environment. The independence of the subprogram depends on the type of the
global items used. If the global items are other subprograms which themselves
do not use global items, the bodies of these subprograms can also be duplicated
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program, perhaps to point out weaknesses in the program design.

3.2.1.2 Type Declarations

Type declarations define a set of values and a set of operations applicable to
those values. Objects (e.g. program variables) or other types can be derived.
from a type. Types do not introduce problems for the distribution of a program, 0
because their only purpose is to define the characteristics of derivable
objects. Ada, however, embodies two types which must be treated carefully: task
types and access types. Task types are dealt with later in this chapter.

Access types enable the definition of reference objects. A value of an access
type (an access value) is either a null value (if there is no object which can
be referred to) or a value that designates an object created by an allocator.
The designated object can only be read and updated via the access value
contained in an access object. The definition of an access type specifies the
type of the objects designated by values (objects) of the access type. An
access type declaration establishes a memory area in which all objects created
by evaluation of allocators for an access type are stored. Designated objects S
may be created dynamically during runtime. The reserved memory area for these
objects is associated with the program unit in which the access type is
declared. Designated objects stored in the area exist, until the program unit .

is left. A designated object may therefore live longer than an object which
holds a respective access value. Designated objects should be treated as global .-

objects by the distribution process. S

3.2.1.3 Block Statements

A block statement is a compound statement that may contain a sequence of
statements. It may also contain a declarative part. The effects of the
declarative part are local to the block statement. The block statement can use
items declared in enclosing scopes. A block statement introduces a new level in
the scope hierarchy of an Ada program (refer Figure 3.2-2). It defines no
interface. S
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declarative item. This association is in effect within a region of the program
text, called the scope of the declaration. Within the scope of a declaration,
there are places where it is possible to use the identifier to refer to the
associated declared item. At this places the declaration is said to be visible.
For a precise definition of the scope of the various declarative items and the S

associated visibility rules the interested reader is referred to [ 1 ].

An Ada program is a hierarchy of declarative regions (refer Figure 3.2-1). In
general an inner scope may use items declared in its enclosing scopes. The
immediately enclosing scope can only use the interface of the inner unit,
defined by the specification of the inner unit, if the service of the inner unit S

is required. The enclosing unit cannot use items of the body of the inner unit.

- - - - - - - - - ------- -- - - - -- - - - -

enclosing unit : enclosing unit I

- - -- - - - - - - - - - - - - - - -

specification of
I inner unit -

-: => : specification of inner unit ,
-- ------------------------- I

---------------- I

body of
' inner unit ------------------------

- body of inner unit 1
I II- -- ------------------- --

Figure 3.2-1 : General Transformation Rule

---------

3.2.1.1 Object Declarations S

An object declaration defines an item of a program which contains a value.
Objects are derived from types and can only contain values of that type.

If objects, which are declared in enclosing scopes, are used in an inner scope,
these objects are said to be global to the inner scope. They introduce
difficulties, if a program is to be distributed. They may be referred to by
program units which are located in different nodes of the distributed system.
In this case the distributed synchronization mechanism must ensure their
integrity. Such objects restrict the distribution of associated program units.

If global objects are used by different task objects, the language does not
define means by which their integrity and the consistency of the whole program
is ensured, unless the global objects are declared to be shared (achieved by use
of the pragma SHARED) or unless their use is embedded in critical regions which
implement mutual exclusion of the respective task objects. Nevertheless, a
distribution process should determine the global objects of an application
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3.1.4 Library Routines

Application systems frequently utilize a number of common routines. Such
routines are called from various locations of an application program. If the
parts of an application program are spread over a distributed hardware
environment, it is very likely that a particular library routine is located in a
different node from the caller and that may cause a lot of inter-node
communication and decreasing the system's performance significantly.

0
Library units can be separated into two different classes: library units having
some sort of memory, and library units not having a memory. The latter class
does not impose any problems, because the library units behave in the same
manner in subsequent calls. Therefore they can be loaded by an application
program more than once. The only penalty is a higher consumption of space in
the main memory. In a distributed environment, however, they have the advantage 0
that they can be loaded in those nodes where their service is required.

Library routines with memory behave differently in subsequent calls. They
cannot be loaded by an application program more than once because the behaviour
of the application program would change unpredictably. They do not cause any
problems for application programs developed according to the MASCOT philosophy.
Such library routines are hidden means of communication. The MASCOT rules,
however, state that all communication has to be performed by using IDAs.
Therefore such library routires are illegal in MASCOT and need not be considered
by a process which distributes MASCOT-like application systems.

3.2 Distributable Parts of Ada Programs

* An Ada main program is a sequential program which may consist of special
objects, called task objects, to allow for parallel computation. Ada programs
which do not contain task objects are not considered in the remainder of this
paper. An Ada main program may additionally use library units made visible by
its context clause. These library units may or .iay not contain task objects.

An Ada main program can only be distributed after static determination of all . .
task objects it contains. Task objects, however, may be created dynamically.
In this case the distribution process can only locate, where in the program such
a task object is initiated. It cannot statically determine the number of task
objects, which will eventually be created during runtime. The main program is
considered to be a subprogram called by a task object of the underlying
operating system.

-

" 3.2.1 Visibility and Scope of Declarations

Ada defines various items which can be declared in declarative parts and are of
interest to a distribution process: types, objects, subprograms, tasks,
packages, generic declarations, and generic instantiations. Subprograms, tasks,
packages, and generic declarations may contain declarative parts themselves. An
Ada block statement, which can occur everywhere where a statement is allowed in
an Ada program, may also contain a declarative part.

. A declaration associates an identifier (or some other notation) with a

10-



MASCOT Device Handlers are not considered to be distributable (refer 3.1). To
be able to communicate with the system's environment, Activities must eventually
call particular Device Handlers. Such Activities should reside in the same node
as the Device Handler for efficiency reasons. Therefore only a subset of the
Activities is distributable.

The distribution of Activities is therefore constrained by four conflicting
requirements:

(1) The location of Activities which depend on specific Device Handlers is

fixed.

(2) The load of the communication network and the need for network-wide

synchronization should be minimized.

(3) A maximum of parallelism between Activities should be achieved.

(4) The amount of unused main memory of nodes should be minimized.

These conflicts may be resolved by taking requirements (1) and (4) as initial
considerations for the distribution, followed by requirement (3). Requirement
(2) may be achieved by shuffling IDAs around accordingly.

It must be realised that only Subsystems can be started, halted, resumed, and
terminated by a user of a MASCOT system during runtime. Therefore, if
Activities are taken as basis for the distribution, a special table must be kept
in the system. This table shows where the various Activities which belong to a
particular Subsystem are located. Every user action that influences the
behaviour of a Subsystem has to be performed network-wide which may result in a !
temporary decrease of the system's performance and may, in the worst case,
result in several unwanted effects.

3.1.3 Subsystems "

Despite the fact that Subsystems were introduced into MASCOT as a conceptual
enhancement only, to ease the design of larger systems, they are the units which
must be addressed, if anybody wants to influence an application system's
behaviour online. The scheduler of a MASCOT Machine, however, only knows
Activities as schedulable units. Nevertheless, it is worth considering whether

Subsystems can be taken as a sound basis for the distribution of an application
system.

Obviously the number of distributable items is reduced significantly. It could
even be that a distribution by hand is done more quickly than by an appropriate
program. If anybody wants to influence the execution of a Subsystem, only one
node of the distributed system is affected. The communication in the
distributed system is only influenced by the number and location of those IDAs
which form interfaces between Subsystems. Therefore the possible number of
conflicts within the communication network is reduced.

However, the application system might not be distributed as efficiently as it
could be. Highly competitive Activities might be loaded in the same node,

because they are part of the same Subsystem. Therefore a high degree of
parallel computation is not achieved, and one of the major goals of distributed
systems is missed.
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3.3.3 Ada Programs

According to the Ada Language Reference Manual I 1 an Ada program is
represented by a procedure (called main procedure) which may use library units.
The main procedure is treated as a task by the underlying runtime environment.
During itF execution the main procedure may initiate a statically undeterminable
number of tasks. It is possible that tasks declared in the text of an Ada
program are never initialized because the initialization depends on results
computed during the execution of the Ada program. The distribution process must
be aware of that fact and prevent a node from only hosting tasks which will 4
never be used. The node hosting the main procedure works as a start-up node for
the distributed system. The initialization of tasks can be treated as remote
procedure calls where the calling node is allowed to continue execution but
cannot terminate before the remote node will have terminated.

The distribution of an Ada program is achieved in several steps. The
distribution process itself needs a proper representation of the distributed
system (refer 2.) and a proper representation of the Ada program (probably a
tree-like representation as produced by an Ada compiler as intermediate form at
the end of the semantic analysis). The distribution process generates
information for the code generation phase of an Ada compiler, the linkage
editor, and the loader.

The four steps of the distribution process are:

(1) Derive the scope tree from the intermediate representation of the Ada

program. *

(2) Determine the use and call relationships between the various parts of
the Ada program.

(3) Determine those subprograms which can be copied (i.e. the subprograms
which do not use global objects) and enlarge the graph representation
accordingly. Mark the disjoint relationship graphs (refer 3.2.1.9). 6

(4) Distribute the disjoint relationship graphs. Consider input/output
constraints etc. of the various program units while distributing.

mI

3.3.4 MASCOT/Ada Programs

If Ada is used for the implementation of application systems designed according
to the MASCOT philosophy, one step of the distribution problem is already done:
the design of the ACP Diagram. The ACP Diagram breaks an application system -@

*down into distributable parts. Nevertheless, a check should be made by a
suitable program to discover hidden global objects that may stem from the use of
library units with which the user is unfamiliar.
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4. Communication

Each node of a distributed system must eventually communicate with other nodes
in the system. The means of communication may be used to pass solicited or
unsolicited information to other nodes, to request (initiate) action sequences
in other nodes, or to synchronize progress, in some way, with one or more other
nodes.

4.1 Communication Mecnanisms

Programs which facilitate parallel computation make special demands on
communications mainly for synchronization purposes. It was to accommodate these •
demands that monitor and other constructs were conceived for shared memory
systems. For distributed systems (without shared memory) communication is made

by sending messages between parts of the application system, which reside in
different nodes.

Message sending may assume two distinct forms: ".

message passing, or

direct remote invocation.

Each form is associated with an accompanying construct with unique syntax and
semantics. The construct is not visible at the user (application system) level
as far as the problems discussed in this paper are concerned. As it is not
clear, what construct is the most suitable in combination with MASCOT and/or Ada
systems, representative constructs are briefly surveyed. The constructs may be

seen to differ in terms of:

the effects on flow of control the construct imposes on the sending and
receiving nodes, and/or

the nature of the synchronization imposed or assumed by invocation of the
construct, and/or

the structure the construct imposes on the program which uses it (It may be
at odds with the semantics of MASCOT or Ada).

4.1.1 Message Passing 0

Message passing schemes generally allow nodes to transmit requests for actions
or data to other nodes. These requests are honoured by the receiving node
according to the locus of control established by the runtime executive which
controls that node. The receipt of a request does not forcibly alter the flow S

of control at the receiving node. Additionally the sending node may

immediately suspend processing and await a response, or

continue processing until such time as the response is required.

Before the receiving node generates a response, it may acknowledge the request.
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Message passing constructs are probably the most versatile. They allow third
party responses which the others do not (at least directly) and they explicitly
consider timeouts and conditions related to damaged message delivery or failed
delivery.

4.1.2 Remote Invocation

Remote invocation schemes allow processes residing in a node to instantiate
(call) procedures defined in other nodes, with the attendant blockage of the

requesting (instantiating) process until execution of that request is completed.

Remote procedure calls are not necessarily distinguishable from normal procedure
calls (i.e. calls of procedures which reside in the same node as the caller)
from the program text. Because remote procedure calls generally have the same 0

syntax as normal procedure calls, their use is constrained by the following
difficulties:

They are asymmetric with respect to the delays imposed on sending and
receiving nodes, i.e. the called procedure is not executed immediately
after its call, and the execution of the caller is not resumed immediately S

after the termination of the remote procedure.

They offer no provisions for timeout declaration or handling within the
application program. The syntax and semantics of procedure calls do not

allow the specification of such parameters and handlers.

They force notification of improper transactions to be given the receiving
node rather than the sending node, even if notifying the sending node may

be more appropriate. The syntax and sematics of procedure calls do not
allow the passing of error messages from the runtime environment to the
application program.

Remote invocations are handled by the underlying runtime environment on the
basis of message passing schemes. The runtime environment must handle errors
which occur during the transmission of the necessary messages between sending
and receiving node. If the programming language the application program is
written in allows the specification of exception handlers within the text of the
application program, information of failures can be passed to the application 0
program and the errors can be handled there. Otherwise failure situations are
not resolvable within an application program itself.

4.1.3 Paired Input/Output Statements .

Communicating sequential processes may interact by means of paired input/output
statements. A node executing a named input (output) is blocked until another
node executes an output (input) with the same name. When a named pair of
commands exist, information is exchanged, and both nodes are allowed to S

progress.

Paired input/output statements are equivalent to Ada's rendezvous, if the
respective accept statement does not contain a sequence of statements.
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4.2 Communication in MASCOT-like Systems

Active elements (Activities) of a MASCOT-like application system may only -0
communicate via Inter-Communication Data Areas (IDAs). An IDA provides a set of
procedures, which can be called by Activities, to gain access to its data area.
These procedures implement critical regions to ensure mutual exclusion of
competing Activities. It seems to be natural, that the procedures are invoked
by remote procedure calls, if the IDA resides in a different node from the
Activity which issues a call.

4.2.1 Invocation of Access Procedures

An Activity issuing a request for an IDA does not know where in the system the
IDA resides. Therefore it must pass control to a special handler which keeps
the locations (nodes) of the various IDAs in a special table. Every node has
knowledge of only those IDAs which are referred to by Activities of the node.
The execution of an Activity is suspended, after control has been passed to the
handler. When an access procedure has finished its execution, the handler
transfers control back to the Activity and the Activity resumes its execution. --0

The following algorithm defines the call of an access procedure in a distributed

environment.

(1) An Activity calls an access procedure of an IDA.

(2) A proper handler accepts the call and the Activity is blocked.

(3) The handler determines the location of the IDA in the network.

(4) If the IDA resides in the same node, a handling instance of the 0
Activity is generated, which calls the respective access procedure.
When the access procedure has finished its execution, the handling
instance is destroyed and control is passed back to the handler. The - .

next action is defined by step (9).

(5) If the IDA resides in a remote node, the handler transfers the
parameters of the access procedure to the communication network,
additionally to the name of the IDA, the name of the access procedure
and the name of the remote node.

(6) A handling instance of the calling Activity is generated in the remote
node. The handling instance calls the respective access procedure.

(7) When the access procedure has finished its execution, its results are
passed back to the handling instance.

(8) The handling instance passes the results back to the handler in the .--

calling node via the communication network. After successful
communication the handling instance in the remote node is destroyed.

(9) The handler activates the Activity.

Figure 4.2-1 shows the flow of control, if an access procedure of a remote IDA
is called. 0
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Figure 4.2-I: Remote Invocation of an Access Procedure .

4.2.2 Problems of Remote Invocation of Access Procedures

The above algorithm begs the following questions:

Are there any restrictions on the types of the parameters of an access

procedure? How is the parameter passing done?

How are failures of the communication network dealt with?

Are the semantics of the MASCOT primitives still valid?

These problems are discussed in the following subchapters. 0

4.2.2.1 Parameters of Access Procedures

It is necessary to assume only three different types of parameters of access

procedures: parameters, which are passed by copying their values, reference
parameters (which include parameters for which only a reference to their memory
location is passed), and parameters, which denote subprograms.

Copy parameters do not introduce any problems. Their values are transmitted
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either with the remote invocation of the access procedure or when control is
passed back to the calling node.

Reference parameters have as value the memory location of the objects they refer
to. Therefore this reference is transmitted with the invocation. When they are
used by the access procedure, the real value must be obtained or updated by the
access procedure by using the communication network. By doing so, the execution

of the access procedure is suspended. This may degrade the performance of the
system. It should therefore be decided either not to use reference parameters
or to copy the value of the object(s) they refer to assuming the location is
within the calling node.

If names of subprograms are passed as parameters, the access procedure must
issue a remote invocation of the respective subprogram, if it uses the
parameter. This imposes a similar constraint as reference parameters.

It would therefore be wise to use copy parameters as parameters of access
procedures only, otherwise realtime conditions may be violated.

4.2.2.2 Communication Problems

In distributed systems nodes cannot detect that other nodes do not work
properly, unless the faulty nodes provide appropriate information themselves.
Knowledge about faults can only be derived by transmitting requests to nodes
assuming that the communication links still work. If such a request is not 0
answered within a specified period of time it is fair to assume that the
requested node does not work. In a MASCOT-like program the only possible
occasion, at which such failure situations are determinable, is when an Activity
calls a remote IDA and the call is not acknowledged immediately. MASCOT itself
does not provide any means by which an application program can react to failure
situations itself, unless an IDA's access procedure delivers some kind of error
message as one of its parameters and this error message can be set and/or used
by the underlying runtime environment.

Now assume that an Activity has called the access procedure of a remote IDA
successfully. The Activity will be blocked by the respective handler. After
this event the remote node may crash. There is no way to reactivate the blocked
Activity again, because the calling node has no need to determine, whether the
remote node is still working or not. A solution might be that the handler which
in fact issued the remote invocation tries from time to time to contact the
remote node. This kind of polling, however, puts some seemingly superfluous
load onto the communication network. Nevertheless, it is the only possible way
to detect failures in distributed environments. However, the MASCOT philosophy
does not provide any help in passing such information to the application program
directly.

Similar problems arise, if it is found that a communication link has broken. In

this case the underlying runtime environment may try other communication paths
to reach the called node. 9
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4.2.2.3 MASCOT Primitives

The MASCOT primitives JOIN, LEAVE, STIM, WAIT, and WAITFOR provide means by 0
which critical regions can be implemented (refer to [ 2 2). They should only be
used within the access procedures of IDAs. Access procedures are logically part
of IDAs. However, they are called by Activities and are executed as part of the
calling Activity, because IDAs are passive elements. The use of the primitives
has a direct influence on the schedulability of the Activity. In a distributed
environment, however, access procedures are called by a handling instance of an .

Activity, while the Activity itself is blocked (refer 4.2.1). The primitives
therefore only affect the schedulability of the handling instances.

The primitives provide for operations on special objects, called control queues,
which behave like semaphores. By calling the primitives Activities either are
allowed to continue execution, or are blocked, or release another blocked
Activity. Apart from delays imposed by the communication network the
application program operates in a distributed system as in a non-distributed
system, and no difference can be detected from the outside.

The primitive WAITFOR may cause some unintended effects, because its execution
is connected with time considerations. The call of the primitive is supplied
with a parameter which defines a time delay. An Activity which issues a WAITFOR
instruction is prevented from continuing its processing until a corresponding
STIM has been applied or the specified time delay has expired, whichever is the
earlier. The reason for the Activity being released from waiting may,
optionally, be indicated through the time delay parameter using the following
values:

0 to indicated time expired

any other value to indicate STIM received.

The WAITFOR primitive was included into MASCOT to prevent time critical
Activities from waiting for ever, if it is impossible for the system to issue
any associated STIM operation. In distributed environments delays imposed by
the communication network are not covered by using the primitive WAITFOR. Only

the handling instance in the remote node benefits from the use of the primitive.
A non-determinable delay must be accepted until the calling Activity is
released. Nevertheless, if looked upon the application program from outside the

distributed environment, the semantics of the WAITFOR primitive are kept.
However, if the delays caused by the communication network cannot be accepted by
a particular application, the WAITFOR primitive is inappropriate across node
boundaries.

To gain the full benefit of the WAITFOR primitive would mean to split an IDA so
that its data area resides in one node and the access procedures are copied and
loaded in those nodes where they are needed. This approach, however, would . -

imply the implementation of a network-wide synchronization mechanism for control

queues what is very complicate and time consuming. The retention of the
original semantics of the WAITFOR primitive would therefore not be preferable to
its loss.
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4.2.3 Solution for MASCOT-like Systems

The algorithm specified in 4.2.1 allows for transfer of control from one node of
a distributed system to another node, but logically still executing the same
Activity. The system behaves in the same way, if looked upon from outside. The
semantics of the MASCOT primitives are kept (in the case of the WAITFOR
primitive only, if delays imposed by the communication network are not
considered). However, to be able to cope with failures and uncertainties of the
distributed hardware environment, at least three facilities should be added to •
MASCOT:

(1) time-out facility

A time-out facility would allow the specification of the time frame
within which a remote node must acknowledge a request.

(2) exception handling facility

An exception handling facility could inform (and thereby release) a
blocked Activity, after the call of an IDA's access procedure has
failed.

(3) polling facility

A polling facility would allow an Activity (or the associated handler)
to check permanently (or from time to time) whether a remote call of an
IDA's access procedure is still pending.

Without these facilities MASCOT-like application programs can be executed with
only limited success. The underlying runtime environment must handle all error
conditions and decide, whether it should abandon the execution of parts of the
application program and restart them again after reloading the respective units
in different nodes or whether it should ask for user interaction.

4.3 Communication in Ada Systems

S
Ada programs are distributed on the basis of task objects. The Ada language

provides two means by which task objects can communicate with each other: common
data areas (global objects) and task entries. Global objects provide for hidden

communication links. Task entries specify direct communication links between
tasks.

Common data areas may only be accessible by using subprograms (e.g. if the data
area is encapsulated in a package). Therefore subprogram calls are to be
considered as additional means of communication.

Ada defines different semantics for the three communication mechanisms involved.

4.3.1 Global Objects

In a distributed environment the values of global objects are obtained and
updated by use of the communication network. Therefore global objects and the
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program locations, at which they are used, must be marked. The address of a

global object consists at least of the name of the node, in which the global
object resides, and the respective memory location. Every node contains a
handler which provides appropriate facilities to access global objects. Because
of this provisions all accesses to global objects can be synchronized easily. -
However, performance penalties may have to be paid.

Ada allows the use of global objects. However, if tasks share objects, it is
the responsibility of the programmer to guarantee the integrity and consistency
of the shared objects. The underlying runtime environment need not provide
synchronization mechanisms for global objects (Because of security and safety 0
reasons at least the compiler should flag the use of global objects in
distributed environments). Nevertheless Ada offers a facility, the pragma

SHARED, to declare objects to be shared. Accesses to such objects are
automatically synchronized by the underlying runtime environment.

0

4.3.2 Subprogram Calls

Calls of subprograms, which reside in remote nodes, can easily be achieved by

the mechanism of remote subprogram calls. The mechanism itself can be
implemented similarly to the one described in 4.2.1. Faults arising during the
execution of the remote subprogram can be reported to the caller by appropriate
exceptions which can then be handled by the caller. The exceptions are to be
implementation defined. They should refer to faults of the communication
network, faults of the remote node, etc.

Ada does not define explicitly how subprogram parameters are passed. The
language allows for the implementation of calls by value and calls by reference.
However, an application program must not rely on a specific mechanism.
Therefore an actual implementation could facilitate the copy mechanism only,
however, with two exceptions: the passing of access objects and the passing of
task objects. The following recommendations are made for the implementation of -•

these two cases:

If a task object is a formal parameter of a subprogram, only means to
enable calls of its entries are passed by an actual call. If an entry call
is issued, it will be handled as described in 4.3.3.

If an access object is a formal parameter, the use of this object initiates

the mechanism provided by the runtime environment to enable the use of

objects residing in remote nodes.

The types of formal subprogram parameters are specified by the program text.

Therefore the compiler can already establish the respective mechanisms.

4.3.3 Entry Calls

Entry calls establish mechanisms for bidirectional message passing between task
objects. The called task executes an optional sequence of statements, while the
calling task is blocked. Because task entries can specify a list of formal
larameters like subprograms and are associated with a piece of code defined by
the accept statement, entry calls are treated as remote subprogram calls.
However, tasks calling a specific entry are synchronized on a first-come S
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first-served basis, wheras subprograms are re-entrant.

To prevent tasks waiting forever for the return from an entry call, Ada defines
two special types of entry calls: conditional entry calls and timed entry calls. lop

A conditional call should be issued, whenever a calling task cannot wait for the
execution of the associated rendezvous. If the rendezvous cannot be performed

immediately, the entry call is abandoned and the calling task executes a
specified sequence of statements. In a distributed environment the semantics
can be defined as follows. An appropriate request is transmitted to the remote
node. The remote node either processes the rendezvous or answers that the
rendezvous is impossible at the moment, because the called task does not wait at
an associated accept statement. The Ada semantics are not changed by this
solution. The delay imposed by the communication network, however, must be
considered.

A timed entry call should be issued, whenever a rendezvous must be started
within a certain period of time. The calling task specifies the possible delay
with the entry call. If the rendezvous is not started within the specified

period of time, the entry call is abandoned and the calling task executes an
optional sequence of statements. The defined semantics can be achieved in a
distributed environment as follows. The calling node issues an appropriate
request for the remote node. If the request is not answered within the

specified delay, an appropriate message is transmitted to the remote node and
the entry call is abandoned, unless the remote node states that the rendezvous
is in progress. This solution is in accordance with the Ada language
definition. - -

4.4 The Communication Protocol

All communication transmitted via the communication network is handled by a 0
communication protocol. The protocol selects the proper communication paths
between nodes according to the requirements of Activities (in MASCOT-like
application programs) or of task objects (in Ada programs).

The protocol detects failures in the communication network and crashes of nodes.
If possible, messages are routed via third nodes in the case of faults. Proper
error information is passed to the caller.

Considerations concerning the actual implementation of a communication protocol
are beyond the scope of this paper.
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5. The Runtime Environment and Associated Tools

An application program running on a distributed environment requires a different
underlying runtime environment to a program running on a single processor
system. Some aspects of this special runtime environment have already been
discussed in previous chapters. Compilers, linkage editors, and loaders must be
aware of the special interface of the runtime environment.

A requirement for the automatic distribution process is that a programmer should
not be aware of the target environment and of the actual distribution of his
program onto the target environment. An application program will be split

according to a special strategy and to constraints imposed by the target
environment. Necessary connections to the underlying runtime system are made to
suit the particular distribution. The distribution process must inform the code
generation phase of the compiler, the linkage editor, and the loader
accordingly.

5.1 Ada Programs

As discussed in 4.3 the semantics of Ada are not affected by the necessary
communication between the nodes of a distributed system. An Ada program can

therefore be developed independently of a target environment (either single
computer system or distributed system), unless machine dependent features are
used in the program text or special implementation defined exceptions (e.g. ®
failures of the communication network) are handled by the program itself.

The runtime system implied by the language definition for a single computer

system must only be extended by the following features:

means by which objects residing in remote nodes are accessed (possibly

including synchronization of the requesting task objects);

means by which subprograms residing in remote nodes are invoked (including
proper transfer mechanisms for the subprogram parameters);

means by which the entries of task objects, which reside in remote nodes,
are called (including proper transfer mechanisms for the entry parameters);

means by which tasks residing in remote nodes are initiated and by which

their termination is told the initiating node.

A powerful communication system must be associated with these features. The
communication system should detect failures of the communication network (and
possibly correct them itself, e.g. by using another communication link) and
failures of nodes (e.g. crashes). All faults should be reported to the
application program via proper implementation defined exceptions. At least the
following exceptions should be provided: fault of communication link, time out,
and failure of remotenode. The need for those exceptions has been discussed in

4.2.2.2. The exceptions would allow an application program to perform some kind
of error recovery. Because task are objects of an Ada program itself and not of
the runtime environment, the only error recovery which can be done by the
runtime environment is to try redundant communication links between nodes, if a
particular link is broken.

An Ada program always starts its execution with that procedure which was
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esignated as main program in the usual sense. Therefore a distributed

nvironment will commence work with that node which hosts the main program. The
ther nodes will start when the tasks they host are initiated. A special
tart-up facility is not necessary. 0

he distribution process computes a scope tree with use and call relationships
rom the application program. A tree-like representation of an Ada program
xists somewhere during its compilation (normally after the analysis phase of
he compiler). This tree-like representation already contains almost all
nformation needed by the distribution process. The synthesis phase (code
enerator) of an Ada compiler should know the distribution considerations made
y the distribution process to be able to generate proper code and to establish
roper connections to the runtime environment. The distribution process
herefore could be a third phase of an Ada compiler which reshapes the program
ree computed by the analysis phase to suit the distribution decisions.

he linkage editor and the loader must be able to use tables produced by the
istribution process to bind and load the application program according to the
istribution considerations.

.2 MASCOT-like Programs

he MASCOT philosophy aims at the development of application programs intended
o run on single computer systems. Nevertheless the incorporated design
ethodology eases the splitting of MASCOT-like programs, because they are
epresented by a graph: the ACP Diagram. However, MASCOT also defines a runtime
ernel for the execution of application programs. The kernel offers
ynchronization primitives based on semaphores (in MASCOT called control

ueues). This approach is not suitable for distributed systems, because it
equires network-wide synchronization of accesses to control queues and this is
ery hard to achieve needing a lot of organisational overhead throughout the
ystem.

possible solution to the problem raises the level of synchronization up to the

ails of access procedures of IDAs, treating the access procedures as monitors.
s shown in 4.2.2.3 the intended semantics of the primitive WAITFOR are lost
hen. Also failures of the communication system and of remote nodes cannot be
andled by the application system itself anymore, unless an exception handling
acility and some other features as discussed in 4.2.3 are added to MASCOT.

.ystem recovery can be achieved very easily after failures in MASCOT-like
pplications, because Activities are totally independent of each other. If a
ode crashes, the respective Activities need only be reloaded in other nodes and
estarted. The reloading of IDAs is more difficult, as their data areas should
e restored. Nevertheless recovery can be performed without interfering with
he application program.

MASCOT Machine defines facilities with which the execution of the application
rogrum can be monitored online. These facilities will add some load on the
ommunication network. A designated node must act as an interface to allow user
nteraction. Monitor requests will be sent from this node to other nodes. The
onitor facility needs an image of the distributed application program to be
ble to determine the locations of all program parts.

MASCOT Frozen Machine can start, halt, resume, and terminate Subsystems. To
irovide this service facilities similar to the monitoring facilities must be
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incorporated into the runtime environment. A MASCOT Evolutionary Machine allows
alteration of an application program online. Such facilities make an automatic
distribution process obsolete.

Linkage editors and loaders are driven by a table generated by the distribution 0
process.

0

0
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Conclusion

decrease software life-cycle costs application programs should be developed
ependently of target environments. Recent years have shown a trend to use
e and more distributed hardware systems in realtime environments to achieve
ater flexibility and reliability. To be able to keep application programs as
iependent as possible from the distributed target environments methods must be
md to distribute application programs automatically over target environments
.keeping realtime constraints and efficiency. 0

.s study has shown that automatic distribution is possible. A distribution
)gram only needs graph-like representations of both application program and
-get environment. The task of the program then is to map the graph
)resentation of the application program on that of the target environment
isidering several constraints such as input/output constraints. The
;tribution strategies, however, are based on rather heuristic assumptions and 0
isiderations. More research is necessary in this area. This study could only
-line the very basic concepts of a distribution process and some aspects of
? necessary runtime environment and associated tools. However, it has been
ind that automatic distribution is feasible.

L semantics of the Ada language are adequate in distributed environments.
ly some implementation defined exceptions should be added to be able to handle
ror conditions special to distributed environments on application program
'el. The call and use relationships introduced in this paper are also useful
analyse data and control flow within an application program and to derive
timization criteria.

SCOT-like programs seem to be distributable very easily because their
velopement is based on a graph representation: the ACP diagram. The
ecialities of the MASCOT Machine (Frozen or Evolutionary), however, complicate
e distribution process. Moreover, the absence of exception handling
2ilities in the MASCOT philosophy beg for amendments of the runtime kernel.
ditionally the semantics of the primitive WAITFOR are not entirely
propriate. The possibility to influence from outside the system the
nedulability of a number of Activities (subsumed under a Subsystem) adds a
nsiderable runtime overhead to the system. The features of an Evolutionary
SCOT Machine which allow the changing of the whole application program online
e in contradiction to an automatic distribution process. Therefore, in the
se of an Evolutionary MASCOT Machine, hand distribution of application
ograms is recommended. Because of the monitoring facilities of MASCOT
2hines a node of a distributed environment must be designated which allows
er interaction with the distributed application program as a whole.

an overall conclusion it must be stated that application programs which are
pposed to run on distributed environments must be developed on host computers.

I tools necessary for an efficient distribution of the application program
st be available on the host computer.
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